IDENTIFIABILITY OF LINEAR COMPARTMENT MODELS

Anne Shiu
Texas A \mathcal{B} M University

ICERM

15 November 2018

From Algebraic Systems Biology: A Case Study for the Wnt Pathway
(Elizabeth Gross, Heather Harrington, Zvi Rosen, Bernd Sturmfels 2016).

Outline

- Introduction: Linear compartment models
- Identifiability (via differential algebra)
- The singular locus

Joint work with
Elizabeth Gross, Heather Harrington, and Nicolette Meshkat
arXiv:1709.10013 and arXiv:1810.05575

Introduction

Compartment model

Structural identifiability: Recover parameters $k_{i j}$ from perfect input-output data $u_{1}(t)$ and $y(t) ?($ Bellman \& Astrom 1970)

IDENTIFIABILITY VIA DIFFERENTIAL ALGEBRA ${ }^{1}$: Which models are identifiable?

Input-OUTPUT EQUATIONS

- Setup: a linear compartment model
- $m=$ number of compartments
- Input-output equation: an equation that holds along any solution of the ODEs,

Input-OUTPUT EQUATIONS

- Setup: a linear compartment model
- $m=$ number of compartments
- Input-output equation: an equation that holds along any solution of the ODEs, involving only input variables u_{i} and output variables y_{i} (and parameters $\overline{k_{i j}}$), and their derivatives

Input-OUTPUT EQUATIONS

- Setup: a linear compartment model
- $m=$ number of compartments
- Input-output equation: an equation that holds along any solution of the ODEs, involving only input variables u_{i} and output variables y_{i} (and parameters $\overline{k_{i j}}$), and their derivatives
- Example, continued:

$$
y_{1}^{(2)}+\left(k_{01}+k_{02}+k_{12}+k_{21}\right) y_{1}^{\prime}+\left(k_{01} k_{12}+k_{01} k_{02}+k_{02} k_{21}\right) y_{1}=\left(k_{02}+k_{12}\right) u_{1}
$$

Input-output Equations

- Setup: a linear compartment model
- $m=$ number of compartments
- Input-output equation: an equation that holds along any solution of the ODEs, involving only input variables u_{i} and output variables y_{i} (and parameters $\overline{k_{i j}}$), and their derivatives
- Example, continued:

$$
y_{1}^{(2)}+\left(k_{01}+k_{02}+k_{12}+k_{21}\right) y_{1}^{\prime}+\left(k_{01} k_{12}+k_{01} k_{02}+k_{02} k_{21}\right) y_{1}=\left(k_{02}+k_{12}\right) u_{1}
$$

- Input-output equations come from the elimination ideal:

〈 differential eqns., output eqns. $y_{i}=x_{j}$, their m derivatives 〉

$$
\cap \mathbb{C}\left(k_{i j}\right)\left[u_{i}^{(k)} y_{\underline{\underline{1}}}^{(k)} y_{\imath_{\curlywedge}}^{(k)}\right]
$$

Input-output EQuations, CONTINUED

$$
A=\left(\begin{array}{cc}
-k_{01}-k_{21} & k_{12} \\
k_{21} & -k_{02}-k_{12}
\end{array}\right) \quad x^{\prime}(t)=A x(t)+u(t)
$$

- Proposition (Meshkat, Sullivant, Eisenberg 2015): For a linear compartment model with input and output in compartment-1 only, the input-output equation is:

$$
\operatorname{det}(\partial I-A) y_{1}=\operatorname{det}\left((\partial I-A)_{11}\right) u_{1}
$$

Input-output Equations, CONTINUED

$$
A=\left(\begin{array}{cc}
-k_{01}-k_{21} & k_{12} \\
k_{21} & -k_{02}-k_{12}
\end{array}\right) \quad x^{\prime}(t)=A x(t)+u(t)
$$

- Proposition (Meshkat, Sullivant, Eisenberg 2015): For a linear compartment model with input and output in compartment-1 only, the input-output equation is:

$$
\operatorname{det}(\partial I-A) y_{1}=\operatorname{det}\left((\partial I-A)_{11}\right) u_{1}
$$

- Proof uses Cramer's Rule and Laplace expansion

Input-output EQUATIONS, CONTINUED

Input-output Equations, CONTINUED

$$
\operatorname{det}(\partial I-A) y_{1}=\operatorname{det}\left((\partial I-A)_{11}\right) u_{1}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
d / d t+k_{01}+k_{21} & -k_{12} & 0 \\
-k_{21} & d / d t+k_{12}+k_{32} & -k_{23} \\
0 & -k_{32} & d / d t+k_{23}
\end{array}\right) y_{1} \\
&=\operatorname{det}\left(\begin{array}{cc}
d / d t+k_{12}+k_{32} & -k_{23} \\
-k_{32} & d / d t+k_{23}
\end{array}\right) u_{1}
\end{aligned}
$$

Input-output Equations, CONTINUED

$$
\begin{gathered}
\operatorname{det}(\partial I-A) y_{1}=\operatorname{det}\left((\partial I-A)_{11}\right) u_{1} \\
\operatorname{det}\left(\begin{array}{ccc}
d / d t+k_{01}+k_{21} & -k_{12} & 0 \\
-k_{21} & d / d t+k_{12}+k_{32} & -k_{23} \\
0 & -k_{32} & d / d t+k_{23}
\end{array}\right) y_{1} \\
=\operatorname{det}\left(\begin{array}{cc}
d / d t+k_{12}+k_{32} & -k_{23} \\
-k_{32} & d / d t+k_{23}
\end{array}\right) u_{1}
\end{gathered}
$$

... expands to the input-output equation:

$$
\begin{aligned}
& y_{1}^{(3)}+\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}\right) y_{1}^{(2)} \\
& +\left(k_{01} k_{12}+k_{01} k_{23}+k_{01} k_{32}+k_{12} k_{23}+k_{21} k_{23}+k_{21} k_{32}\right) y_{1}^{\prime}+\left(k_{01} k_{12} k_{23}\right) y_{1} \\
& \quad=u_{1}^{(2)}+\left(k_{12}+k_{23}+k_{32}\right) u_{1}^{\prime}+\left(k_{12} k_{23}\right) u_{1} .
\end{aligned}
$$

Coefficients of input-output equations

$$
\begin{aligned}
& y_{1}^{(3)}+\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}\right) y_{1}^{(2)} \\
& \quad+\left(k_{01} k_{12}+k_{01} k_{23}+k_{01} k_{32}+k_{12} k_{23}+k_{21} k_{23}+k_{21} k_{32}\right) y_{1}^{\prime}+\left(k_{01} k_{12} k_{23}\right) y_{1} \\
& \quad=u_{1}^{(2)}+\left(k_{12}+k_{23}+k_{32}\right) u_{1}^{\prime}+\left(k_{12} k_{23}\right) u_{1} .
\end{aligned}
$$

CoEfficients of input-output EQUATIONS

$$
\begin{aligned}
& y_{1}^{(3)}+\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}\right) y_{1}^{(2)} \\
& \quad+\left(k_{01} k_{12}+k_{01} k_{23}+k_{01} k_{32}+k_{12} k_{23}+k_{21} k_{23}+k_{21} k_{32}\right) y_{1}^{\prime}+\left(k_{01} k_{12} k_{23}\right) y_{1} \\
& \quad=u_{1}^{(2)}+\left(k_{12}+k_{23}+k_{32}\right) u_{1}^{\prime}+\left(k_{12} k_{23}\right) u_{1}
\end{aligned}
$$

- coefficient of $y_{1}^{(i)}$ corresponds to forests with $(3-i)$ edges and ≤ 1 outgoing edge per compartment
- coefficient of $u_{1}^{(i)}$ corresponds to $(n-i-1)$-edge forests:

- Thm 1: The coefficients correspond to_forests in model.

IdEntifiability

$$
\begin{aligned}
& y_{1}^{(3)}+\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}\right) y_{1}^{(2)} \\
& \quad+\left(k_{01} k_{12}+k_{01} k_{23}+k_{01} k_{32}+k_{12} k_{23}+k_{21} k_{23}+k_{21} k_{32}\right) y_{1}^{\prime}+\left(k_{01} k_{12} k_{23}\right) y_{1} \\
& \quad=u_{1}^{(2)}+\left(k_{12}+k_{23}+k_{32}\right) u_{1}^{\prime}+\left(k_{12} k_{23}\right) u_{1}
\end{aligned}
$$

- (Generic, local) identifiability: can the parameters $k_{i j}$ be recovered from coefficients of input-output equations?

Identifiability

$$
\begin{aligned}
& y_{1}^{(3)}+\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}\right) y_{1}^{(2)} \\
& \quad+\left(k_{01} k_{12}+k_{01} k_{23}+k_{01} k_{32}+k_{12} k_{23}+k_{21} k_{23}+k_{21} k_{32}\right) y_{1}^{\prime}+\left(k_{01} k_{12} k_{23}\right) y_{1} \\
& \quad=u_{1}^{(2)}+\left(k_{12}+k_{23}+k_{32}\right) u_{1}^{\prime}+\left(k_{12} k_{23}\right) u_{1}
\end{aligned}
$$

- (Generic, local) identifiability: can the parameters $k_{i j}$ be recovered from coefficients of input-output equations?

$$
\begin{aligned}
\mathbb{R}^{5} & \rightarrow \mathbb{R}^{5} \\
\left(k_{01}, k_{12}, k_{21}, k_{23}, k_{32}\right) & \mapsto\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}, \ldots\right)
\end{aligned}
$$

- Solve directly, or use ...
- Proposition (Meshkat, Sullivant, Eisenberg 2015): Identifiable \Leftrightarrow Jacobian matrix of coefficient map has (full) rank $=$ number of parameters

Identifiability

$$
\begin{aligned}
& y_{1}^{(3)}+\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}\right) y_{1}^{(2)} \\
& \quad+\left(k_{01} k_{12}+k_{01} k_{23}+k_{01} k_{32}+k_{12} k_{23}+k_{21} k_{23}+k_{21} k_{32}\right) y_{1}^{\prime}+\left(k_{01} k_{12} k_{23}\right) y_{1} \\
& \quad=u_{1}^{(2)}+\left(k_{12}+k_{23}+k_{32}\right) u_{1}^{\prime}+\left(k_{12} k_{23}\right) u_{1} .
\end{aligned}
$$

- (Generic, local) identifiability: can the parameters $k_{i j}$ be recovered from coefficients of input-output equations?

$$
\begin{aligned}
\mathbb{R}^{5} & \rightarrow \mathbb{R}^{5} \\
\left(k_{01}, k_{12}, k_{21}, k_{23}, k_{32}\right) & \mapsto\left(k_{01}+k_{12}+k_{21}+k_{23}+k_{32}, \ldots\right)
\end{aligned}
$$

- Solve directly, or use ...
- Proposition (Meshkat, Sullivant, Eisenberg 2015): Identifiable \Leftrightarrow Jacobian matrix of coefficient map has (full) rank $=$ number of parameters generically

The singular locus

Definition

- Focus on the non-identifiable parameters: the singular locus is where the Jacobian matrix of coefficient map is rank-deficient.
- Example, continued:

The equation of the singular locus is:

$$
\operatorname{det} \mathrm{Jac}=k_{12}^{2} k_{21} k_{23}=0
$$

Identifiable submodels

- Motivation: drug targets
- Thm 2: Let \mathcal{M} be an identifiable linear compartment model, with singular-locus equation f. Let $\widetilde{\mathcal{M}}$ be obtained from \mathcal{M} by deleting edges \mathcal{I}.
If $f \notin\left\langle k_{j i} \mid(i, j) \in \mathcal{I}\right\rangle$, then $\widetilde{\mathcal{M}}$ is identifiable.

Identifiable submodels

- Motivation: drug targets
- Thm 2: Let \mathcal{M} be an identifiable linear compartment model, with singular-locus equation f. Let $\widetilde{\mathcal{M}}$ be obtained from \mathcal{M} by deleting edges \mathcal{I}.
If $f \notin\left\langle k_{j i} \mid(i, j) \in \mathcal{I}\right\rangle$, then $\widetilde{\mathcal{M}}$ is identifiable.
- Example:

$$
f=k_{12} k_{14} k_{21}^{2} k_{32}\left(k_{12} k_{14}-k_{14}^{2}-\ldots\right)\left(k_{12} k_{23}+k_{12} k_{43}+k_{32} k_{43}\right)
$$

Identifiable submodels

- Motivation: drug targets
- Thm 2: Let \mathcal{M} be an identifiable linear compartment model, with singular-locus equation f. Let $\widetilde{\mathcal{M}}$ be obtained from \mathcal{M} by deleting edges \mathcal{I}.
If $f \notin\left\langle k_{j i} \mid(i, j) \in \mathcal{I}\right\rangle$, then $\widetilde{\mathcal{M}}$ is identifiable.
- Example:

$$
f=k_{12} k_{14} k_{21}^{2} k_{32}\left(k_{12} k_{14}-k_{14}^{2}-\ldots\right)\left(k_{12} k_{23}+k_{12} k_{43}+k_{32} k_{43}\right)
$$

- Converse is false: deleting k_{12} and k_{23} is identifiable!

Cycle and mammillary models

- Thm 3:
- The singular-locus equation for the Cycle model is $k_{32} k_{43} \ldots k_{n, n-1} k_{1, n} \prod_{2 \leq i<j \leq n}\left(k_{i+1, i}-k_{j+1, j}\right)$.
- The singular-locus equation for the Mammillary model is $k_{12} k_{13} \ldots k_{1, n} \prod_{2 \leq i<j \leq n}\left(k_{1 i}-k_{1 j}\right)^{2}$.

Catenary (Path) models

Catenary (Path) models

Conjecture: For catenary models, the exponents in the singular-locus equation generalize the pattern above.

Tree conjecture

$$
\text { in } \longrightarrow \text { (2+1)+1=4/2)} \stackrel{2}{\leftrightarrows}
$$

Tree conjecture

Conj.: (Hoch, Sweeney, Tung) For tree models, the exponents in the singular-locus equation generalize the pattern above.

Identifiable submodels (again)

- Thm 4: Let $\widetilde{\mathcal{M}}$ be obtained by:
- adding a leak to a strongly connected model \mathcal{M} with no leaks, or
- deleting the leak from a strongly connected model \mathcal{M} with input, output, and leak in one compartment.
Then, if \mathcal{M} is identifiable, then so is $\widetilde{\mathcal{M}}$.
${ }^{2}$ Can delete edges without making the singular-locus equation $=0$.

Identifiable submodels (again)

- Thm 4: Let $\widetilde{\mathcal{M}}$ be obtained by:
- adding a leak to a strongly connected model \mathcal{M} with no leaks, or
- deleting the leak from a strongly connected model \mathcal{M} with input, output, and leak in one compartment.
Then, if \mathcal{M} is identifiable, then so is $\widetilde{\mathcal{M}}$.

Operation	Preserves identifiability?
Add input	Yes
Add output	Yes
Add leak	Not always (and see above)
Add edge	Not always
Delete input	Not always
Delete output	Not always
Delete leak	Open (and see above)
Delete edge	Not always (recall Thm 2^{2})

${ }^{2}$ Can delete edges without making the singular-locus equation $=0$.

Future work

Nonlinear models

From Processive phosphorylation: mechanism and biological importance, Patwardhan and Miller, Cell Signal. 2007.

Summary

The singular locus is an interesting mathematical object that can help us answer the question, which linear compartment models are identifiable?

Thank you.

Identifiability degree

- the identifiability degree of a model is the number of parameter vectors that match (generic) input-output data

IdEntifiability degree

- the identifiability degree of a model is the number of parameter vectors that match (generic) input-output data
- Proposition (Cobelli, Lepschy, Romanin Jacur 1979)

Model	Identifiability degree
Catenary (path)	1
Mammillary (star)	$(n-1)!$

- Thm 5

Model	Identifiability degree
Cycle	$(n-1)!$

